
a37 

Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1962. 
6. KAMKE E., Handbook on Ordinary Differential Equations, IIL, Moscow, 1950. 

Translated by M.D.F. 

PMM lJ.S.S.R.,Vo1.54,No.6,pp.837-841,1990 
Printed in Great Britain 

002i-892aj90 $10.00+0.00 
01992 Pergamon Press plc 

A HOLLOW ELLIPSOIDAL NEEDLE IN AN ORTHOTROPIC ELASTIC MEDIUM* 

G.N. MIRENKOVA and E.G. SOSNINA 

The problem of the stress distribution on the surface of a hollow 
ellipsoidal needle in an orthotropic elastic medium and a homogeneous 
external field is solved. Explicit expressions are obtained for the 
stresses on the needle surface in terms of the elastic constants of the 
medium and parameters of the ellipsoid in a local system of coordinates 
connected to the normal to the surface at each point of the needle. The 
general solution of the problem of the stress concentration on an 
ellipsoidal inhomogeneity /l/ and the passage to the limit cases of an 
ellipsoidal cavity based on the presence of small parameters /2/ is 
used. 

1. Consider a hollow ellipsoidal needle, i.e., an ellipsoidal cavity, one of whose 
dimensions is large compared with the other two, in an orthotropic unbounded elastic medium 
subjected to an external uniform field uoafl. The equation of the ellipsoid is written in 

the form 
(1.1) 

in an (x,, z?, z,J system of coordinates rigidly connected to the ellipsoid. 
We will assume that the axes of elastic symmetry of the external orthotropic medium 

coincide with the axes of the ellipsoid. Then the tensor of the elastic constants of the 
medium c@+ has nine non-zero components that are denoted according to the usual rule /3/ 

by 

ca@fi = cafi (a. p = 1, 2, 3) (1.2) 
P3 = C14, p1 _ cs5, cl=? z ce6 

The stresses oafi on the surface of an ellipsoidal cavity in a uniform external field 

aOip have the form 
o'xfl(n) = fi"!,(n)o?, 1;"!,(n) = B"A"P(n)Rxbhll (1.3) 

where n = (nl, n.$, n3) is the normal to the ellipsoid surface. 
The tensor stress concentration coefficient F?_,,(n) can be represented in the form of 

the product of two factors. The first of them, the tensor Bagxp(n) depends only on the 
elastic constants of the medium and the inclusion and on the normal n to the inclusion surface, 
and remains finite for any passages to the limit. 'For a cavity the tensor B(n) has the form 
/l/ 

BafiA@(n) = ,+>.!I _ pWPKxpllv (n) cqvk $4) 

where the tensor K(n) for an orthotropic medium is constructed explicitly in terms of the 
Fourier transform of Green's tensor of a homogeneous medium. The expressions for the com- 
ponents of K(n) in terms of the elastic constants of an orthotropic medium and the coordinates 
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of the unit vector of the normal n are presented in /4/, and for an isotropic medium in /l/. 
The tensor B(n) for a cavity is symmetric within pairs and with respect to permutation 

of pairs of superscripts B aJ)b (n) = Bh~afi (n,) : BRahv (n) and its components are obtained from 

(1.4) by convolution of appropriate components of the tensors c and K (II). 

Because of the awkwardness of the expressions for the components of B(n) we will present 

their values over the principal ellipsoid sections n 
ponents of the tensor B(n) in the section 

n, ==. , ;:i,n;, f;,=; 0. The non-zero com- 

Here A,, is the cofactor of the element cnp of the matrix I( cafi 1) (a, p z 1, 2, 3) and A 

is the determinant of this matrix. 
The components of the tensor B(n) in the sections n2 = 0 and n3 -= U are obtained 

from (1.5) by the change in subscripts I-2, 4~5 and 1~3, 4 - 6, respectively. The 
expression for B(n) for an isotropic medium is given in /2/. 

The factor B-l of the concentration coefficient F(n) in (1.3) depends on the shape 
of the inhomogeneity and is a constant tensor inverse to the tensor B for an ellipsoid, which 
is expressed in terms of the mean value of B(n) over the ellipsoid surface 

B""& = (B""'*(n)> = (~~~)ra~a,a, S ~3"""" (n)p (II) dn (1.6) 
$1 

p(n) = (a12n1* + uzzrz8" ,- aapngl)-',~ 

where the integration is performed over all directions of the unit vector n, i.e., over the 

surface of the unit sphere. The dependence of the tensor B on the ellipsoid parameters is 
concentrated in the scalar weighting factor p(n), which considerably facilitates the passage 
to the limit cases, and enables explicit expressions to be obtained for the stresses on the 
surface of needles, cracks, and discs. 

2. We will use the method proposed in /2/ for the passage to the limit case of a needle. 
We introduce the dimensionless parameters 5 ~= azal~lV E = a,a,-'. Then c<l, E-1 corresponds 
to the needle. We expand the weighting factor P (n) in (1.6) in the small (but finite) par- 
ameter 5 by extracting the singular component 6(t) therein and substituting the expansion 

of P (n) into (1.6), we obtain an expansion of the tensor B: 

(2.1) 
-3, 

tcp7 (3 are spherical coordinates with the 0 axis directed along the needle axis L,)_ 
Since the tensor B, for any anisotropic medium has an inverse /2/, we can limit ourselves 

to the principal term B, in the expansion (2.1). Therefore, the solution of the problem of 
the stress distribution on the needle surface reduces to evaluating the single integrals (2.1) 
and the inversion of the tensor B,. 

We obtain the principal terms of the expansion of the components of the tensors B and FL 
is the small parameter 5 for an orthotropic medium. We note that B and B-' have the symmetry 
and structure of the tensor of elastic constants. We will first write the tensor B(q,O). 
It follows from formulas (1.5) for n(n) the the arbitrary non-zero component of the tensor 
Ii ('0, 0) (with the exception of 1212 and 1313) can be represented in the form 
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The tensors P, Q and R have the symmetry of the elastic constants tensor and their non- 
zero components are expressed in terms of the elastic characteristics as follows 

Substituting (2.2) and (2.3) for B(cp.0) into (2.1) and integrating over T, we obtain 

The tensor U-l, inverse to B, is determined by the relationships 

#zgrNR-' - lay;, = '..2(6,%&fi 7. I%%?$) L&UT - 

where I(fRm is a single quadrivalent tensor symmetric within the pair (c@),(m) and by com- 

mutation of the pairs of indices. 
Construction of the tensor B-' reduces to inversion of a sixth-order matrix. The 

components B with indices 1212, 1313, 2323 are found directly as quantities inverse to the 
corresponding quadruple component of the tensor B. The remaining six independent components 
of B-1 are elements of a symmetric third-order matrix ]/Rap-'/] inverse to I] Bafl]] where 

R"fl RaaPP H&l B&p (a. p ?= 1, 2, 3) 

Carrying out the necessary calculations, we obtain 

(2.5) 

If we introduce Young's modulus E, and Poisson's ratios vap of an orthotropic medium 
/5/, then 

A,&' E;‘, A,rA-l -~. ---v,&-' (a # p, a, fi 1, 2, :1) 

The expressions for the components of the tensor K' for an isotropic medium are 
presented in /6/. 

Since 5 - 1 for the needle, the components of the tensor 8-l are always finite. Con- 
sequently, the concentration coefficient P(n) tends to a finite value as j-0 and, 
therefore, the stresses @b(n) have no singularities on the needle surface. 

The expressions for the components of the tensor P(n) over the principal sections of 
the ellipsoid are obtained in explicit form, but are not presented here because of their 
awkwardness. We will present at once the expressions for the stresses on the needle surface. 

We will first obtain expressions for the non-zero components of the stress tensor at the 
needle apices A (n, =: 1, h2 .~ ,t3 = O), B (a, ~- n3 =I 0, a2 ~= I), C (al -2 n, = 0; ,z3 = 1) 

(2.6) 
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3. Investigation of the stresses o(n) as a function of the elastic constants of the 
medium is performed conveniently in the local system of coordinates .&' (9. 1, 2, 3) con- 
netted with the normal n at each point of the surface. We select the following as the local 
basis 

where e, are the unit vectors of the coordinate system connected with the ellipsoid axes, I'., 

are the directions of the local system, and no is the normal to the section ILK I'. In the 
new basis the stress tensor P'fl' (n) along the principal ellipsoid sections will be planar 
(all the components with subscript 3 equal zero because of the equilibrium conditions). The 
non-zero components CF"~', a""'. c"I' are denoted, respectively, by 

o"" o 
1, 'P' 2 0.2, ol'l' := 'c I::.?) 

We note that the stress u, in the sections '2' .= 0 and 1~: = 0 is directed perpendicu- 
lar to the plane of the section, (T? is directed along the tangent to the section contour, 
and conversely in the section n3 0. The direction of u' and 0' is not defined at the 
apex of the ellipsoid C; consequently, we agree to consider a'(C) D'~(C) and o?(C) x 0" (C). 

We present expressions for the stresses 0,. IS? and r along the principal sections of 
the ellipsoid: 

In the section n,=o 

(:;.::) 

(3.5) 

The values of pz, q2, qz, & and h h r13, q3 are obtained from p', q', rl',$, in (1.5) 
by the replacement of the subscripts l-. 2, 4+- 3 and 1 .- 3, 4 tj 6, respectively. 

For an isotropic medium the stresses u'. u2, 7 over the principal sections on the needle 
surface have the form: 

In the section n' 2 0 

In the section n2 - 0 
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us = (1 - Xnl*) (I011 + IZvE - x (1 - 2v)n,‘lu,?~ f 1(x + W)n,2 - 
&]oo53 - p 

7 = (1 + 5) [(x5)-1(1 T j)nlug= - nsql12l 
213 = 2x (1 7 j-.l)n1nsu013 

In the section n3 = 0 

Therefore, explicit expressions in terms of the ellipsoid parameters, the elastic con- 
stants of the external medium, and the coordinates of the unit normal vector are obtained for 
the stresses on the needle surface. Analysis of these expressions shows that the anisotropy 
of the medium introduces both quantitative and qualitative changes into the behaviour of the 
stresses. 
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A METHOD OF CONSTRUCTING WEIGHTING FUNCTIONS FOR A CIRCULAR CRACK* 

A.N. BORODACHEV 

A general formulation is used to consider a static problem for a 
linearly elastic body with internal circular crack of normal 
separation. It is shown that the corresponding weighting function 
enabling a direct calculation to be made of the stress intensity factor 
(SIF) under arbitrary loading conditions is equal to the product of the 
axisymmetric weighting function and Poisson's kernel. The known 
axisymmetric solution /l/ is used to construct, as an example, the 
weighting function for a circular crack in an unbounded inhomogeneous 
body with periodic law of variation in the value of Poisson's ratio. 
An asymptotic analysis of the solution obtained is carried out for a 
material with rapidly oscillating elastic characteristics. 

Some problems of the inhomogeneous theory of elasticity were 
studied for bodies with variable Poisson's ratio in /l-4/. 


